Numerical study of a microscopic artificial swimmer.

نویسندگان

  • Erik Gauger
  • Holger Stark
چکیده

We present a detailed numerical study of a microscopic artificial swimmer realized recently by Dreyfus in experiments [Dreyfus, Nature 437, 862 (2005)]. It consists of an elastic filament composed of superparamagnetic particles that are linked together by DNA strands. Attached to a load particle, the resulting swimmer is actuated by an oscillating external magnetic field so that it performs a nonreciprocal motion in order to move forward. We model the superparamagnetic filament by a bead-spring configuration that resists bending like a rigid rod and whose beads experience friction with the surrounding fluid and hydrodynamic interactions with each other. We show that, aside from finite-size effects, its dynamics is governed by the dimensionless sperm number, the magnitude of the magnetic field, and the angular amplitude of the field's oscillating direction. Then we study the mean velocity and the efficiency of the swimmer as a function of these parameters and the size of the load particle. In particular, we clarify that the real velocity of the swimmer is influenced by two main factors, namely the shape of the beating filament (determined by the sperm number and the magnetic-field strength) and the oscillation frequency. Furthermore, the load size influences the performance of the swimmer and has to be chosen as a compromise between the largest swimming velocity and the best efficiency. Finally, we demonstrate that the direction of the swimming velocity changes in a symmetry-breaking transition when the angular amplitude of the field's oscillating direction is increased, in agreement with experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A simple self-organized swimmer driven by molecular motors

We investigate a self-organized swimmer at low Reynolds numbers. The microscopic swimmer is composed of three spheres that are connected by two identical active linker arms. Each linker arm contains molecular motors and elastic elements and can oscillate spontaneously. We find that such a system immersed in a viscous fluid can self-organize into a state of directed swimming. The swimmer provide...

متن کامل

Noisy swimming at low Reynolds numbers.

Small organisms (e.g., bacteria) and artificial microswimmers move due to a combination of active swimming and passive Brownian motion. Considering a simplified linear three-sphere swimmer, we study how the swimmer size regulates the interplay between self-driven and diffusive behavior at low Reynolds number. Starting from the Kirkwood-Smoluchowski equation and its corresponding Langevin equati...

متن کامل

Taxis of Artificial Swimmers in a Spatio-Temporally Modulated Activation Medium

Contrary to microbial taxis, where a tactic response to external stimuli is controlled by complex chemical pathways acting like sensor-actuator loops, taxis of artificial microswimmers is a purely stochastic effect associated with a non-uniform activation of the particles’ self-propulsion. We study the tactic response of such swimmers in a spatio-temporally modulated activating medium by means ...

متن کامل

اثرات ورزش منظم شنا بر شدت علایم قطع مورفین ناشی از نالوکسان در موش‌های بزرگ سفید آزمایشگاهی

Background and Objective: Development of effective ways to impede drug-induced synaptic changes can play a vital role in the treatment and prevention of relapse as a clinical problem. Previous studies suggest that exercise decreases the sensitivity to the rewarding effects of morphine in rats. This study was designed to investigate the effects of regular swimming exercises on naloxone-precipita...

متن کامل

Analysis of drafting effects in swimming using computational fluid dynamics.

The purpose of this study was to determine the effect of drafting distance on the drag coefficient in swimming. A k-epsilon turbulent model was implemented in the commercial code Fluent(®) and applied to the fluid flow around two swimmers in a drafting situation. Numerical simulations were conducted for various distances between swimmers (0.5-8.0 m) and swimming velocities (1.6-2.0 m.s(-1)). Dr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 74 2 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2006